On the Difficulty of Achieving Equilibrium in Interactive POMDPs
نویسندگان
چکیده
We analyze the asymptotic behavior of agents engaged in an infinite horizon partially observable stochastic game as formalized by the interactive POMDP framework. We show that when agents’ initial beliefs satisfy a truth compatibility condition, their behavior converges to a subjective ǫ-equilibrium in a finite time, and subjective equilibrium in the limit. This result is a generalization of a similar result in repeated games, to partially observable stochastic games. However, it turns out that the equilibrating process is difficult to demonstrate computationally because of the difficulty in coming up with initial beliefs that are both natural and satisfy the truth compatibility condition. Our results, therefore, shed some negative light on using equilibria as a solution concept for decision making in partially observable stochastic games.
منابع مشابه
Subjective Equilibria in Interactive POMDPs: Theory and Computational Limitations
We analyze the asymptotic behavior of agents engaged in a infinite horizon partially observable stochastic game formalized by the interactive POMDP framework. We show that when agents’ initial beliefs satisfy a truth compatibility condition, their behavior converges to a subjective 2-equilibrium in a finite time, and subjective equilibrium in the limit. Imposing an additional assumption of mutu...
متن کاملA Framework for Optimal Sequential Planning in Multiagent Settings
Introduction Research in autonomous agent planning is gradually moving from single-agent environments to those populated by multiple agents. In single-agent sequential environments, partially observable Markov decision processes (POMDPs) provide a principled approach for planning under uncertainty. They improve on classical planning by not only modeling the inherent non-determinism of the probl...
متن کاملAnytime Point Based Approximations for Interactive POMDPs
Partially observable Markov decision processes (POMDPs) have been largely accepted as a rich-framework for planning and control problems. In settings where multiple agents interact POMDPs prove to be inadequate. The interactive partially observable Markov decision process (I-POMDP) is a new paradigm that extends POMDPs to multiagent settings. The added complexity of this model due to the modeli...
متن کاملMonte Carlo Sampling Methods for Approximating Interactive POMDPs
Partially observable Markov decision processes (POMDPs) provide a principled framework for sequential planning in uncertain single agent settings. An extension of POMDPs to multiagent settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive hierarchical belief systems which represent an agent’s belief about the physical world, about beliefs of other agents, ...
متن کاملA Particle Filtering Based Approach to Approximating Interactive POMDPs
POMDPs provide a principled framework for sequential planning in single agent settings. An extension of POMDPs to multiagent settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive hierarchical belief systems which represent an agent’s belief about the physical world, about beliefs of the other agent(s), about their beliefs about others’ beliefs, and so on....
متن کامل